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Abstract

Purpose — This paper aims to develop a numerical method for analysing the time-dependent
conjugate heat and fluid flows inside and around single bubbles rising in a hot liquid.
Design/methodology/approach — The procedure combines the moving mesh method for flows in
time-dependent geometries and the zoned calculation algorithm for conjugate viscous flows. A moving
axisymmetric boundary-fitted mesh is used to track the deformable gas-liquid interface, while
conjugate flows in both gas and liquid sides are calculated by a two-block zoned method. The
interfacial stresses are employed to calculate the velocity value and to decide the time-dependent
bubble shape simultaneously. Governing equations for the rising velocity and acceleration of the
bubble are derived according to the forces acting on the bubble.

Findings — A calculating procedure for time-dependent conjugate heat and fluid flows inside and
around a rising single bubble has been developed. The algorithm has been verified, and can be employed
for further analysing heat, mass and momentum transfer phenomena and their relevant mechanisms.
Originality/value — The paper developed a method to obtain high fidelity results for the heat and
fluid flow details in the vicinity of a time-dependent moderately deformable rising bubble; the
physically zero-thickness of a gas-liquid interface is guaranteed. The governing equations for the
time-dependent rising velocity and acceleration are derived.
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Nomenclature

a = coefficient of discretisation
equation

] = Jacobian transformation
number

Fus sy Fe, Fw = convection-diffusion fluxes at
controlling cell face #, s, ¢, w

n, s, e, w = cell faces of a control volume

N, S, E, W = neighbours of grid node P

Nu = Nusselt number

b = pressure, Pa

R = position vector of P

7 = axisymmetric radial
coordinate

R, Ry, = curvature radii in the
azimuthal and meridional
surfaces, respectively

Re = Reynolds number

S = source term

Sc = Scmidt number

Sh = Sherwood number

t = time

u, v = velocity components along
x and y, respectively, m/s

¥ = volume of bubbles

w = vector of velocity

We = Weber number

y = vertical coordinates

Greek symbols

¢ = general  transport  field
variables

P, P, =ratios of fluid properties
defined by equation (3)

r = diffusion coefficient of ¢

b = density, kg/m®

n = dynamic viscosity of fluids,

kg/m s

1. Introduction

T = stress tensor

a, B,y = coordinate  transformation
parameters

Quz,y Opro = relaxation factors

= finite difference operator

&Em = curvilinear coordinates

Superscripts

@ = pertaining to block 1 (interior
of gas-liquid interface)

2 = pertaining to block 2 (exterior
of gas-liquid interface)

() = pertaining to block i ¢ = 1, 2)

K,K+1 = iteration steps

! = a correction

* = an approximated value

Subscripts

1,2 = components in ¢ and 7
directions, respectively

a = pertain to azimuthal surface

m_ = pertain to meridional plane

it =pertain to normal and
tangential directions,
respectively

N, S, E, W = pertaining to neighbours
N, S EW

n,s, e, w = pertaining cell faces #, s, ¢, w

Z—1,Z =nodes on zonal boundary and
on the first inner grid line,
respectively

&Em = partial derivative with respect
to ¢ and 7, respectively

b = pertain to a general transport
field variable ¢

00 = pertain to far field boundary

Momentum, heat and mass transfer between rising bubbles and the surrounding fluid
are very popular and play important roles in engineering devices such as boilers and
bubbly-flow-based chemical reactors. These transfer phenomena relevant to the
gas-liquid interfaces are very complex but decisive to the productive capacity of the
devices. The heat and fluid flows in both sides of the gas-liquid interface are conjugate,
and the interface is deformable and of zero-thickness. A slight change of local mass,
momentum and energy can cause great changes in the productive capacity of the
devices. Because of the complexities, a single inert bubble is often employed to study
the basic mechanism of the relevant transfer phenomena; and high fidelity for the flow
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phenomena near the gas-liquid interface is the most important requirement for this
kind of study.

For numerical analysis, because the properties of fluids usually exhibit
step-changes at the interface, the predictions of heat and mass transfer and fluid
flows must be performed simultaneously with the determination of the bubble shape.
This problem is, therefore, very challenging for CFD researchers.

Mathematically, the simulation of a deformable single bubble is a moving
boundary problem, which has a large body of successful strategies and numerical
schemes. Most of these have been aimed at the difficulty of the tracking of time
dependent moving boundaries. Reviews of these numerical strategies are presented
by Shyy et al (1996), Davidson and Rudman (2002) and Son (2005). Generally
saying, the tracking of a moving boundary can use Lagrangian methods such as the
arbitrary Lagrangian-Eulerian method (Hirt et al, 1974), Eulerian methods such as
volume of fluid (VOF) method (Hirt and Nichols, 1981; Davidson and Rudman,
2002), level set method (Osher and Sethian, 1988; Sussman et al., 1994; Son et al.,
1999; Son, 2001, 2005) or Eulerian-Lagrangian methods (Univerdi and Tryggvason,
1992; Kan et al., 1996; Bunner and Tryggvason, 1998; Tryggvason et al., 2001). The
front capturing methods such as VOF and level set, as reviewed by Shyy et al
(1996), use fixed Cartesian grids and can deal with strong deformation of bubbles.
However, because the gas-liquid is captured, the numerical result has a non-physical
thickness of more than a grid-space, the physical zero-thickness of a gas-liquid
interface is not guaranteed by both the VOF and level set methods. This
non-physical interface thickness combined with the rough treatments of interfacial
forces, such as to change the tension force into a body force by the VOF method,
can smear the fidelity of the flow details at the vicinity of the interface. These
shortcomings of the VOF and level set methods are harmful for analysing the
mechanism of heat and mass transfer at the interface. On the other hand, methods
using a moving mesh are attractive because the moving boundary can be explicitly
and accurately decided; and the physical zero-thickness of the interface 1is
guaranteed by these methods. Ryskin and Leal (1984a, b) proposed to calculate the
steady flow about single bubbles using a boundary-fitted mesh and Dandy and Leal
(1989) later employed this strategy to study conjugate flows in liquid drops. These
studies were restricted to the solving of steady Navier-Stokes equations in terms of
vorticity and stream-function, and only orthogonal mesh systems can be used.
Using orthogonal mesh is not a good option for calculating flows in complex
geometries because of the mathematical difficulties in generating the strictly
orthogonal mesh. In order to solve the problem, the present authors proposed to use
a general non-orthogonal mesh method to calculate the steady heat and fluid flows
in deformed bubbles (Lai ef al, 2003, 2004). In those calculations, we use a zoned
body-fitted mesh to calculate the conjugate heat and flows in deformed bubbles. The
zero-thickness of the gas-liquid interface is guaranteed and high fidelity of flow
details near the interface is obtained.

This paper combines our non-orthogonal mesh method for steady conjugate
flows in bubbles with a moving mesh algorithm, for flows in time-dependent
geometries and also proposed by the authors Lai et al (2002), to calculate the
time-dependent conjugate heat and fluid flows inside and around a rising bubble.
As a starting step, we will only present the method in an axisymmetric form and



calculate moderately deformable bubbles in this paper although the method has
possibilities of expanding to be fully three-dimensional. This simplification is to
highlight the advantage of obtaining high fidelity for the heat and fluid flows near
the interface by the method.

The main contents of paper are organised in three sections. Section 2 presents the
full algorithm. This starts in Section 2.1 from the governing equations. The
discretisation of the basic equations using a non-staggered SIMPLE algorithm is
presented in Section 2.2, where the Van Leer’s (1979) total variation diminishing (TVD)
scheme MUSCL is employed and the “space conservation law” (SCL) is invoked.
Section 2.3 is the boundary conditions for the time-dependent conjugate flows relevant
to the gas-liquid interface. The key step of using the interfacial boundary conditions to
determine the interfacial velocity and the shape of the interface is presented in
Section 2.4. Section 2.5 analyses the forces acting on the gas-liquid interface, and then
presents the governing equations for the rising velocity and the acceleration. The
solution algorithm for the whole problem is summarised in Section 2.6. Section 3
presents validation and application of the algorithm. This includes validating bubble
shape at terminal state by available experimental data, and validating the calculated
time-dependent rising velocity using results from an asymptotic model which is based
on experiments, in Section 3.1. Based on this, Section 3.2 applies the algorithm to
calculate the conjugate heat and fluid flows during time-dependent rising and
deforming procedure of an inert bubble. Finally, the summary of the paper is given in
Section 4.

2. Mathematical formulation
2.1 Goverming equations
For simplicity, this paper studies the laminar and axisymmetric flows and assumes:

+ Both the gas and the liquid are Newtonian fluids and the physical properties of
the two fluids are constants; especially, the flows are incompressible.

+ The dissolving of the bubble is sufficiently slow and the concentration of
dissolved mass is dilute enough so that the Stefan flow can be ignored. In the
meanwhile, the dissolution of the dispersed-phase is assumed to be a
unidirectional procedure from the dispersed phase at the interface.

» There is no surface-active material.
* The flow inside the bubble is isothermal.

The non-inertial axisymmetric cylindrical coordinate system (7, y) is originated at the
geometrical centre of the bubble, O; 7 and y are the radial and vertical coordinates,
respectively, (shown in Figure 1(a)). A two-block computational domain is separated
by a zonal boundary fitting the bubble surface profile. Denote the interior and
exterior blocks and all parameters pertaining to them with superscripts (1) and (2),
respectively, the normalised governing equations for the heat and fluid flows are as

following:
a(m) aqb d¢p
Dy o+ o =1 (M) < L (M3 e )

where:
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Figure 1.

Zoned computational
domain and grids:

(a) computational domain;
and (b) grids distribution
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u and v are Cartesian components of W, the velocity of flow in the non-inertial
coordinates system; 7" is temperature; ¢ is the concentration of species. The Reynolds
number Re ) is based on the referential velocity Vi, diameter s, p @ and o @; Prand
Sc are Prandtl and Schmidt numbers; «,(f) is the acceleration of the rising bubble and
will be discussed later. For density p and viscosity u, we have:

(8]
® p

@® o
I
P p®’ ¢, = ReW = Re® _~ 2

M(Z) ) @/J{ b
where @, and @, are the ratio of density and viscosity between the fluids in both sides
of the gas-liquid interface.

From the point of view of a chemical reaction in bubbly flows, it is a procedure of
changing electrons between ions; this procedure always occurs in the liquid side where



the dissolved gas can freely ionise, and the procedure may accompanied by heat Time-dependent

transfer. Because of these, the heat and mass transfer could be regarded as procedures
between bubble surface and the liquid and, therefore, for the temperature field 7" and
concentration field ¢, we only consider them outside of the bubble surface (i.e. the liquid
side) in this paper.

2.2 Discretisation of equations
In a Lagrangian (time-dependent) non-orthogonal boundary-fitted coordinates system
(¢, & m), equation (1) changes into:

0019 o [ [a, T ( 06 .00
ot +a_§{7{6’¢ 7<aa_§ Bén)]}

9 o, L (L3¢ 3¢ _
+a_n{7{G"d’ ]( Bafﬂan”}_ﬂs’

where «, B, v are metrics of the curvilinear coordinates while J is the Jacobian
determinant:

(©)

=1tV B=ram—Yeyn, Y=1itYE J=revn—yaw (@)

G! and G” are the contravariant components of the relative velocity W,

— —

W,=W- Wg, Gl = (u — ug)y, — (v — vg)r,

) ®)
G, = (v —vg)re — (U — ug)yg
ug and v, are Cartesian components of grid velocity I7Vg:
dr dy
=1 T (6)

Integrating equation (1) over the shaded control volume shown in Figure 2, we have:

(M)PA;IW}AfAﬂ +_7[n _}s +Jle _}w = (]VS)PAffAn- (7)

To calculate the cell face fluxes £, fs, . and £, Van Leer’s (1979) TVD scheme
MUSCL is employed and implemented in a form of “deferred correction” (1974) to the
upwind approximation by introducing an additional source term Spc. The final form of
discretisation is:

apdp = andy + asds + ap g + awdw + b + Spc, ®)

where:
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Figure 2.
Control volume for
discretisation

ap = ay + as + ag + ay + (JrAéAn) /At
b= (JrS)pAéAn + (Jrp)’AéAn/At
Spc =1 {G1 G minmod (A, A,) — G Gi; minmod (A,, A))

rmrn rn

—G) .G,  minmod (A, A;) + G, G, minmod (A, AY)

rsrs sy R rsYrs
+Gf’erj minmod (A,, A, ) — vaer_; minmod (A,, A])

rawraw raTrw

—G? G** minmod (Aw, A,) + G? G* minmod (Aw, A) }

Ar=dp—dp1. Ar=dpa— ¢ A =dpp— dp, G =190
min mod(a, b) = sgn(e)max{0, min[|a|,y sgn(a)]}

ap, ay, as, ap and ay are calculated by the first-order upwind scheme (Patankar, 1980),
Spc 1s the additional source term introduced by the using of the deferred correction.

It should be specially mentioned that the determinant of Jacobian transform J in
equations (7) and (8) cannot be simply calculated according to equation (4) because the
so-called SCL (Trulio and Trigger, 1961; Thomas and Lombard, 1979) must be
satisfied. The mathematical description of the SCL can be obtained from equation (3)
by setting ¢ =1,I'=0,S =0, =1, and W, = —Wy(W = 0), which results in:

o] G, oG, o
ot 0z T om ©

Equation (9) implies that the time derivative of the computational cell volume is related
to the grid velocity. To satisfy the SCL, Lai ef al (2002) proposed to calculate the
grid velocity using equation (6) and then update J through equation (9); an explanation



for the SCL has also been given by the present authors in that study but omitted here  Time-dependent

to avoid duplication.
The basic equations of heat and fluid flows will be solved by using the SIMPLE
method with a non-staggered grid arrangement (Lai and Yan, 2001).

2.3 Boundary conditions
The boundary conditions are imposed as following:
At the axis of symmetry (x = 0):

@)
av_o op ~0 aT_O ac:O

u=0, —=0, =0, —=0, —=0 10)
ar a7 a7 a7
at the free stream (far field, i.e. at R=R,in Figure 1(a)):
u=0, v=-Vol), p?=pu, T9=Tx, ¥ =0y §8))
at the interface:
WP =we =0 (12)
W =we® (13)
{ i’
70, =77, (14)
1 1 1
1) _®
Tﬁ q)p—f-m (]e—m‘i‘]z) _7-771 y (15)
TO=T®=Tg, ¢ =c® =g, 16)

where the subscripts “%” and “?” denote the unit normal and tangential vectors of the
interface, respectively; “sat” denotes variables at status of saturation; W and W5 are
normal and tangential components of interfacial velocity; 7 is the fluid internal stress
tensor whose components are 7; and 7; We is Weber number. The balance of normal
forces acting at the bubble surface is shown in Figure 3(a), where R, and R, are
curvature radii in the meridional plane and the azimuthal surface, respectively, and
calculated as follows:

1 yore—reve 1 _ Ve an

R 32 R 32"
") (i)

In the boundary conditions at the interface, equations (12) and (13) are the kinematic
conditions, describing no penetration across the interface and the continuity of
tangential velocity, respectively; equations (14) and (15) are the dynamic conditions, the
continuity of tangential stress and the balance of normal stress (notice different
referential density has been used in the two sides of the interface); conditions in
equation (16) are the first kind boundary conditions for temperature and concentration.
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Figure 3.

Determination of the new
interface position:

(a) balance of normal
stress; and (b) update of
interfacial profile

2.4 Interfacial treatments and a modified “Ryskin-Leal” method

Except the unknown value V,(f), which will be discussed in the next section, boundary
conditions (10), (11) and (16) are straightforward to be posed because these equations
are very simple and can be used to impose the explicit boundary values of primitive
variables. The treatments of conditions (12)-(15) are the major difficulties because they
are genuinely transient conditions for determining bubble shape and interfacial
velocities. The stresses in equations (14) and (15) are calculated as following:

0 =
t Re(l)'y]

J J
8—2‘ + (e — v:B) —”}

ik (18)

ou v
[Vg)’ﬁ +J’§7% —eB+ye))

; : 2 ou v v ou
() _ _p@0) _ Y g2
T Ry [B<y§8§ ’fag)”(’fan ygan)} 1

It is obvious that equations (18) and (19) are neither explicit functions of time nor first
kind Dirichlet conditions of interfacial velocity. Special treatments must be proposed so
as to decide the bubble shape and interfacial velocity. In the current study, the
“continuous stress method” for steady flows in bubbles, proposed by the authors Lai
et al. (2003), 1s further employed to obtain interfacial velocity from equations (12) to
(14), making use of the implicit characteristics of these equations. In other words, as no
explicit time appears in equations (12)-(14), the determination of interfacial velocity at
every instant can be carried out according to the “continuous stress method” for steady
problems; the details of the method are described by Lai et al. (2003).

In the meanwhile, the bubble shape at each instant must be determined. Ryskin and
Leal (1984a, b) reviewed some possible routes and proposed a simple and indirect
method of determining the interface shape by using equation (15). In their method, the
shape of an interface is modified at each iteration step by moving the points of the
surface in local normal direction by an amount proportional to the pressure difference.
Owing to the restraint of using orthogonal meshes, the interface updating had to be
done indirectly by changing the Lame metric coefficients of the coordinates system;
possible instability of numerical calculation is inevitably introduced. In order to sort
out the problem, Salvador (1994) proposed to decide the interface shape by directly
modifying the coordinates of the points. Salvador (1994) and Raymond and Rossant
(2000) studied the slightly deformed bubbles using this method. Although these




applications are for studying steady bubbles using “external flow” models, their Time-dependent

methods to determine the interface shape can be modified to our current study. heat and fluid
Figure 3(b) shows an initial shape, R, , of bubble profile at a certain physical instant. q
It could be an intermediate result and, therefore, further iterations must be carried out. OWS
The imbalance of normal forces on the current iteration (denoted by script K):
A= g L(LL V) 20) 427
P T7l Tﬁ p m le_m R—a , (

is used to predict the interface shape. That is:

R = R, + apo i, @1)
where 7% is the unit normal vector of the interface. Because the bubble profile is
explicitly updated in equation (21), and the curvature radii R, and R, generally
contains second derivatives of the coordinates, the calculation will be unstable and
an under-relaxation factor a,y, is introduced. The value of ay, is determined by
numerical experiment, its typical value is of the magnitude of 10 310~ %

Except using the low valued under-relaxation factor ey, 2 smoothing method has
to be applied occasionally to filter the high frequency waves generated during
updating the bubble profile. Discrete filters (Sagaut and Grohens, 1999) maybe
applicable but the harmonious decomposition to the imbalance of normal stress,
suggested by Salvador (1994), is more attractive for the current study because of its
easy controlling of cut-off wave. This harmonious decomposition is adopted in our
study and briefly introduced in the following.

Considering the imbalance of normal forces, A7;. It is a function of & Because of the
axisymmetry assumption, A; can be further treated as a periodical function in the
zone of [—é&nax » Emax 1. A harmonious decomposition can be carried out by expanding
Ar; using the Fourier series as following:

A7 (&) = él2_o+ Z [arcos(kwé) + bypsin(kwd)], 22)
=1
where w = 77/ &max:
gm;\x
a=g [ Andeostodds k=0.123,...

" Smax

ngIX
bk = fmlax / ATﬁ(g)Sin(kwg)dg’ k = 1, 27 37 CECEEY

max

For calculations based on discretisation:

gmax
> Ar(écostkwg)Ag, k=0,1,2,3,...

=— &inax

a, =

§max

§mﬂx
b= ) An(&sinkog)AE, k=123,

=— &inax
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According to Salvador’s (1994) suggestion, the maximum order of the Fourier series
can be set as kpax =5 ~ 6. —new

The new position of the interface, X, determined by equation (21) is not an exact
value; the conservation of the bubble volume is employed here to determine exact
position at the K + 1th iteration. Define a volume-scaling factor R as following:

KN\ 1/3
&R:(V> , @3)

Vnew

where ¥X and ¥V are the volumes enclosed by the profiles RX and f?“ew,
respectively. The updated position of the interface is, therefore, decided as:

- K+1 > new

R, =%R, . 24)

The two-step method in equations (21) and (24) of determining interface shape differs
from Ryskin and Leal’s (1984a, b) method by updating the bubble profile directly and is
called as a “modified Ryskin-Leal method”.

Every time after the bubble profile is updated, the grids for calculation must be
adjusted so as to map the deformed bubble profile. Because the origin of the
non-inertial coordinates system has been fixed at the bubble’s geometrical centre,
the outer boundary of the computational domain (R = R in Figure 1(a)) can be
retained during the grid adjustment. Therefore, the procedure for adjusting the grids is
actually re-generating the grids in the two single-connected domains A VBOCHDD
and A®BACOD® respectively; the single-connected domain grid-generation is
carried out by using the well-known TTM method proposed by Thompson et al. (1974),
where TTM is the abbreviation of these researchers’ surnames. Figure 1(b) shows an
illustration of the grid distribution, which are stretched close to the bubble profile so at
to highlight the flow details there.

2.5 Rising velocity
In order to calculate the time-dependent bubble rising described by the governing
equations and boundary conditions, the unknown time-dependent velocity and
acceleration of bubble geometrical centre, V,(f) and a,(f) appeared in equations (11)
and (1) and with respected to the earth, must be decided; and additional independent
equations must be derived and coupled with the Navier-Stokes equations. This paper
decides the rising velocity and acceleration according to the forces acting on the
bubble.

Consider a single bubble rising in an unbounded liquid. The integration of the
normal and tangential forces over the bubble results in the vectorial summation of the
buoyancy and drag forces:

§mﬂx
Fy=Fg—Fp= /0 2mr (m;f’ + ygf))dg, (25)

where Fp and Fy are the buoyancy and drag forces, respectively.
Except the surface forces, the gravity acts on the bubble in the form of a body force:

Fg=p"¥g. (26)



Therefore, the acceleration of the bubble satisfies the following equation:

pV¥-ap(t) = F, — Fg = Fg — (Fp + Fy). @7

The rising velocity of the bubble can be given by the integration of a,(¢):

t
Vot) = Volto) + / ao(tydt. (28)

to

Give the initial value of V,(¢;) and proper initial fields, the mathematical model of the
current problem becomes well posed and can be solved.

2.6 Solution algorithin
A full numerical procedure to calculate the time-dependent rising of a single bubble
introduced into an unbounded liquid is summarised as follows:

(10)

define a far field boundary R = R,, where the flow blockage effects due to the
bubble can be neglected;

give an initial field and a time step Af

in time level #"*! = ¢” + At, determine ao(t"t!) and Vo(t"*!) according to
equations (26) and (27), respectively;

solve fluid flows inside and around a given shape of bubble, subject to the
boundary conditions (12)-(14), by using the “continuous stress method”;

update the bubble profile according to the “modified Ryskin-Leal method”;

regenerate body-fitted mesh to map the new bubble-profile, calculate the grid
velocity ug, and v, according to equation (6) using implicit difference with
respect to time, updating the Jacobian J using equation (9) and recalculate the
coefficients of discretised equation (8);

return to step (4) and carrying out iterations until equation (15) is satisfied;
return to step (3) to update ap(t"+1) and Vo(t") if they are still changing with
the updating of bubble profile for #"+; otherwise, convergence of fluid flow can
be declared for time-level ¢ = ¢"+1;

solve the heat and mass transfer problem for time-level ¢ = t"*!, subjects to
boundary conditions in equation (16); and

check the variation:

Vo™ = Vo™ = e, (29)

if inequality (29) is satisfied, the rising bubble has arrived at its terminal state and the
calculation can be stopped; otherwise, return to step (2) to calculate the next time-level.

The criterion e, defined by inequality (29) is an important parameter for
calculation of time-dependent rising and must be valued on the magnitude of O(10™ %)
or even higher.

Time-dependent
heat and fluid
flows

429




HFF
174

430

Figure 4.
Comparison of bubble
shapes

Table 1.

Comparison between
computed and measured
aspect ratios

3. Numerical results
3.1 Validation
The bubbles measured by Raymond and Rossant (2000) are employed to validate the
current numerical procedure. Corresponding to the experimental conditions (at room
temperature, 20°C, and in atmosphere), the ratios of fluid properties are set as
®,=1:800 and &, = 1:100. The outer boundary is assigned at 50 times of the
equivalent bubble radius where the blockage effects of the bubble can be neglected
(Lai et al., 2003). In order to eliminate the grid-dependency of the numerical results,
three meshes are tested with mesh 1, block 1 = 52 X 32, block 2 = 62 X 62; mesh 2,
block 1 = 82 X 42, block 2 = 90 X 82; and mesh 3, block 1 = 162 X 62,
block 2 = 182 X 162. Five cases are calculated and the results are shown in
Figure 4 and Table L

Table I compares the bubble aspect ratios, //w, where /2 and w are the height and
width of the bubble, respectively. The results obtained by mesh 1 have maximum
relative errors in all the five cases while the difference in the results of mesh 2 and
mesh 3 are negligible. For the case of (Re®, We) = (28, 3.7), the error between the

(Red, we) (Raymongxazgg)esrgnt, 2000) Fresent Result
(05,0.15) ’ @
o ()
wen | .
(19,13) o Q
(9.3, 40) o Q

(Re®, We) h/w experiments (Raymond and Rossant, 2000) //w mesh 1 //w mesh 2 h/w mesh 3

(0.5, 0.15) 0.98 0.951 0.975 0.977
(3.7, 1.00) 0.87 0.848 0.877 0.875
(28, 3.70) 0.64 0.623 0.640 0.638
(1.9, 1.30) 0.84 0.862 0.836 0.835
(9.3, 4.00) 0.57 0.613 0.601 0.599




experiment and calculation with mesh 1 is about 2.66 per cent, which means mesh 1is  Time-dependent

not fine enough to produce grid-independent results; on the other hand, the
discrepancies between numerical and experimental //w values for meshes 2 and 3 are
less than 5 x 10 2 for this case. Except the final case shown in Table I, both meshes 2
and 3 have obtained excellent agreement with experiment and difference of the results
obtained by the two meshes in all cases are of the magnitude of 10~ 3, therefore, mesh 2
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can be regarded as fine enough to provide a grid independent solution and it will be

employed in the left calculations in this paper. The final case in Table I has a

discrepancy of 5 per cent for both mesh 2 and mesh 3; this deviation between

experiment and calculation is possibly not a result of numerical error, but is more likely
to be a result of the asymmetry of the bubble profile for this case, as pointed out by
Raymond and Rossant (2000). Despite this deviation, the agreements between
calculation and experiments are good in general; these agreements are also confirmed
by the comparison of the calculated bubble shapes with their photographs given by
Raymond and Rossant (2000), as shown in Figure 4.

More validations of the algorithm by steady conjugate flow at terminal state of
rising bubbles have been presented in our previous papers (Lai ef al., 2003, 2004). For
the simulation of a bubble at the acceleration stage, we validate the prediction of
time-dependent rising velocity against the results from the asymptotic model for
spherical bubbles (Mei ef al., 1994), which is based on the summary and analyse of a
large variety of experimental data. Figure 5 shows the time history of dimensionless
rising velocity for the air bubbles rising in hot water (100°C and 1 atm) at Re @ = 200,
®,=1:800, P, =1:100, Pr® = 2 and Sc® = 500. It can be seen that the present
result for spherical bubble (We = 0) has a perfect agreement with the asymptotic

model. In addition, Figure 5 also shows the lower Weber number, the closer to the
asymptotic model data. This is because the bubbles at lower Weber number have

o8/,

o6t !/ /!
s O  Me'smodel (1994)
! N We=0
L " 'o _
04 /) [f — We=1

A /A L PP R We=3

Vol®)

02 )

Figure 5.
Time history of rising
velocity of bubbles at
Re® = 200
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stronger gas-liquid interface tension and, therefore, weaker deformation, their shapes
are closer to be spherical.

In the meanwhile, the results show that at a given exterior Reynolds number, a
bubble at the bigger Weber number needs the shorter dimensionless time to arrive at
its terminal state. Krishna and Baten (1999) and Sato ef al. (2000) observed that bubbles
at large Weber number values had oscillatory rising velocity and zig-zag trajectories.
These phenomena are not found in our calculation because our Weber number is small
and the flow around the bubble is laminar.

3.2 Bubble dynamics during acceleration

Nine cases, whose terminal Reynolds and Weber numbers are (Re®, We) =
[10, 50,2001 % [1, 3,5], are calculated in this study. The computational domain and
mesh are the same with previous calculations. Again, the fluid properties are set to
those of air bubble rising in hot water (100°C and 1 atm).

Figure 6 shows the evolution of bubble shape and flow structure for
(Re®, We) = (200, 5), where the streamlines are expressed in term of the relative
velocity W,. Outside the bubble, flow separation from the bubble surface is
observed during the bubble rising, at non-dimensional time f= 2.1. The ring
vortex grows with time but attached to the bottom of the bubble all the time; so
vortex shedding does not occur and the rising path remains smooth. For our
simulated cases, very weak flow separation at the rear of the bubble is also
observed at (Re®, We) = (50, 5). These two cases are not in the range of Reynolds
and Weber numbers studied by Krishna and Baten (1999) and Sato ef al (2000).
So it is not a surprise for the smooth rising velocity shown in Figure 5. Inside the
bubble, when flow separation occurs, the circulation changes from a single ring
vortex to a structure with a pair of counter rotating ring vortices. Figure 6 also
shows that the deformation of bubbles occurs mainly at the early stage of the
acceleration, namely, before V,(f) arrives at about 80 per cent of its value at
terminal state; later than this, the deformation is very slow. Relative to this
early-stage bubble deformation, the onset of separation is later. V,(f) at the onset
of separation (t = 2.1) 1s already nearly 95 per cent of its terminal value, as shown
in Figure 5. This phenomenon may prove that separation is the accumulation of
vortices, which is indicated by Ryskin and Leal (1984a, b). Because of the
curvature and no-slip boundary at the gas-liquid interface, vorticity can be
generated and be advected to the rear of the bubble and results in flow separation.
This procedure takes time so the wake vortex can only be observed at the late
stage of acceleration.

In the meanwhile, the late onset of separation raises a requirement for the
convergent criterion &t defined by inequality (29). In our calculation, this criterion is
set at eref = 1 X 1074 s0 as to expose all details of flow phenomena.

Figures 7 and 8 show the time-dependent development of dimensionless
temperature and concentration fields. In these figures, the propagations of the
temperature and concentration are seen to happen at the early stage of bubble rising
when deformation quickly occurs. The temperature field has stronger diffusion while
the concentration is more dominantly controlled by convection. This can be clearly
observed at the very beginning of bubble-rise, where the contours of temperature are
almost fore-aft symmetric while the concentration fields are obviously asymmetric.
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Figure 6.

Evolution of bubble shape
and flow structure at
Re® =200, We =5

t=0.05 t=2.0

In the meanwhile, the concentration wake zone behind the bubble is narrow and long
while that of temperature is wide and short.
Define the local Nusselt and Sherwood numbers as following:

Nu=-"", Sh=-2, (30)
n
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Figure 7.
Development of
temperature field for a
rising bubble at

Re® =200, We =5
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where 7 is the unit local normal vector of the bubble surface and pointing into the
liquid side. The time-dependent changes of Nu and S, averaged along the bubble
surface, are shown in Figures 9 and 10. These parameters have a same story with
the time-dependent rising velocity, that is, the parameters increase quickly at the
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early stage of bubble acceleration while the increase for late stage is very slow.
It should be noticed that even at the instant when the bubble enters the hot liquid,
the averaged Nusselt and Sherwood numbers are not zero because of the diffusion
effects.
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Figure 9.

Time history of averaged
Nusselt number for rising
bubbles at Re® = 200

Figure 10.

Time history of averaged
Sherwood number for
rising bubbles at

Re® = 200
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4. Concluding remarks
A calculating procedure for time-dependent conjugate heat and fluid flows inside and

around a rising single bubble has been developed by combining our previously
developed moving mesh method for flows in time-dependent geometries with the zoned
algorithm for conjugate viscous flows in steady bubbles. In order to highlight the high
fidelity performance of the procedure and reduce the complexity of the problem, the
numerical procedure is temporally presented in an axisymmetric formula although it
can be easily be expanded to a three-dimensional form. A moving boundary-fitted
mesh system is employed to track the deformable gas-liquid interface while conjugate
flows in both gas and liquid sides are calculated by a two-block zoned method. The
interfacial stresses are employed to calculate the velocity value and to decide
the time-dependent bubble shape simultaneously. Governing equations for the rising
velocity and acceleration of the bubble are derived according to the forces acting on
the bubble. Calculations show that the numerical results of bubble shape at terminal
states agree very well with the experiments while time-dependent rising velocity
collapse with the asymptotic model based on experimental data. Based on the
validations, the algorithm is further employed to study time-dependent dynamics of



rising bubbles in a hot water and some preliminary insights of conjugate heat and fluid
flows in rising bubbles are obtained. The algorithm can be employed for further
analysing heat, mass and momentum transfer phenomena and their relevant
mechanisms.
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